If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2-52a+312=0
a = 2; b = -52; c = +312;
Δ = b2-4ac
Δ = -522-4·2·312
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-4\sqrt{13}}{2*2}=\frac{52-4\sqrt{13}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+4\sqrt{13}}{2*2}=\frac{52+4\sqrt{13}}{4} $
| 3(2x1)=1-2x | | 4x-19=21-6x | | x^2+16/x=8 | | 2(9x+7=9+(8x-98) | | 7-3x=2x+18 | | 3x-5×(x+10)-2×(2-X)+3X=42 | | y+11=12. | | 3x-5×(+10)-2×(2-X)+3X=42 | | 42000=2.x+x+x/2 | | 21-6(2+q)=21-11q | | 3x-5*(+10)-2*(2-X)+3X=42 | | P(x)=x²-4x+10/x+2 | | 1300=0.3(x) | | x=0.3(1300) | | P=3p-10/p | | x−3=7− | | 8(z+3)=-32 | | 2x-3(+5)=55 | | 2x+3(+5)=55 | | 3.2.x=16. | | 4x3+10x2-6x=0 | | 8y2+3y-10y=0 | | x*0.1=300 | | 1/12x+15-12x=6x+12 | | 12x/1+15-12x=6x+12 | | 0.80^x=0.5 | | 6x^2=(11-5x)/2 | | 2/4=13/n | | 5p+10=7-3p | | 5p+10=8- | | 3(x+10)=-8 | | 3(x+10)=6-x |